A Dynamic Ensemble Framework for Mining Textual Streams with Class Imbalance
نویسندگان
چکیده
منابع مشابه
A Dynamic Ensemble Framework for Mining Textual Streams with Class Imbalance
Textual stream classification has become a realistic and challenging issue since large-scale, high-dimensional, and non-stationary streams with class imbalance have been widely used in various real-life applications. According to the characters of textual streams, it is technically difficult to deal with the classification of textual stream, especially in imbalanced environment. In this paper, ...
متن کاملMining Textual Stream with Partial Labeled Instances Using Ensemble Framework
Increasing access to large-scale, high-dimensional and non-stationary streams in many real applications has made it necessary to design new dynamic classification algorithms. Most existing approaches for the textual stream classification are able to train the model relying on labeled data. However, only a limited number of instances can be labeled in a real streaming environment since large-sca...
متن کاملEnsemble diversity for class imbalance learning
This thesis studies the diversity issue of classification ensembles for class imbalance learning problems. Class imbalance learning refers to learning from imbalanced data sets, in which some classes of examples (minority) are highly under-represented comparing to other classes (majority). The very skewed class distribution degrades the learning ability of many traditional machine learning meth...
متن کاملBatch Weighted Ensemble for Mining Data Streams with Concept Drift
This paper presents a new framework for dealing with two main types of concept drift (sudden and gradual) in labeled data with decision attribute. The learning examples are processed instance by instance. This new framework, called Online Batch Weighted Ensemble, introduces element of incremental processing into a block-based ensemble of classi ers. Its performance was evaluated experimentally ...
متن کاملA Semi-supervised Ensemble Approach for Mining Data Streams
There are many challenges in mining data streams, such as infinite length, evolving nature and lack of labeled instances. Accordingly, a semi-supervised ensemble approach for mining data streams is presented in this paper. Data streams are divided into data chunks to deal with the infinite length. An ensemble classification model E is trained with existing labeled data chunks and decision bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2014
ISSN: 2356-6140,1537-744X
DOI: 10.1155/2014/497354